Skip to main content

Trie

Trie is a data structure belonging to n-ary trees, which is designed for some specific questions, such as, prefix of strings. (If you have never known what binary tree is, maybe you can check binary tree first before read more about Trie). The fact that there are only 26 different letters greatly reduce the possible choices for each position. Or to make it clear, for each position, there are 26 different choices. In mathematics, it seems to be very large (height^26 for the full tree), but in reality, it is rare to be a full tree for the set of meaningful strings (needs at least height^26 strings to be a full tree!), since the height or length of English words are less than 10 in most cases. Therefore, it is popular in string matching or related operations.

Please be noted that the trie structure is not only limited to strings, the same idea can be extended to other data types, such as integer (then it becomes a binary tree, since for bit, there are only two possible values).

In the code part, there are usually three steps:

1. define the trie node structure;

2. build trie;

3. function for searching the trie (or extract information needed).


Question List


Upper Layer


Comments

Popular posts from this blog

Brute Force - Question 2

2105. Watering Plants II Alice and Bob want to water n plants in their garden. The plants are arranged in a row and are labeled from 0 to n - 1 from left to right where the ith plant is located at x = i. Each plant needs a specific amount of water. Alice and Bob have a watering can each, initially full. They water the plants in the following way: Alice waters the plants in order from left to right, starting from the 0th plant. Bob waters the plants in order from right to left, starting from the (n - 1)th plant. They begin watering the plants simultaneously. It takes the same amount of time to water each plant regardless of how much water it needs. Alice/Bob must water the plant if they have enough in their can to fully water it. Otherwise, they first refill their can (instantaneously) then water the plant. In case both Alice and Bob reach the same plant, the one with more water currently in his/her watering can should water this plant. If they have the same amount of water, then Alice ...

Sweep Line

Sweep (or scanning) line algorithm is very efficient for some specific questions involving discrete intervals. The intervals could be the lasting time of events, or the width of a building or an abstract square, etc. In the scanning line algorithm, we usually need to distinguish the start and the end of an interval. After the labeling of the starts and ends, we can sort them together based on the values of the starts and ends. Thus, if there are N intervals in total, we will have 2*N data points (since each interval will contribute 2). The sorting becomes the most time-consuming step, which is O(2N*log(2N) ~ O(N*logN). After the sorting, we usually can run a linear sweep for all the data points. If the data point is labeled as a starting point, it means a new interval is in the processing; when an ending time is reached, it means one of the interval has ended. In such direct way, we can easily figure out how many intervals are in the processes. Other related information can also be obt...

Graph - Medium Level - Question 1

Graph - Medium Level - Question 1 Leetcode 2049. Count Nodes With the Highest Score There is a binary tree rooted at 0 consisting of n nodes. The nodes are labeled from 0 to n - 1. You are given a 0-indexed integer array parents representing the tree, where parents[i] is the parent of node i. Since node 0 is the root, parents[0] == -1. Each node has a score. To find the score of a node, consider if the node and the edges connected to it were removed. The tree would become one or more non-empty subtrees. The size of a subtree is the number of the nodes in it. The score of the node is the product of the sizes of all those subtrees. Return the number of nodes that have the highest score. Constraints: n == parents.length 2 <= n <= 10^5 parents[0] == -1 0 <= parents[i] <= n - 1 for i != 0 parents represents a valid binary tree. Analysis: If we have had the binary tree, then we just can do a top-down count, to count the number of nodes for the sub-tree with the root as the curren...