Skip to main content

Graph - Example

Graph - Example


Leetcode 133. Clone Graph

Given a reference of a node in a connected undirected graph.

Return a deep copy (clone) of the graph.

Each node in the graph contains a value (int) and a list (List[Node]) of its neighbors.

class Node {

    public int val;

    public List<Node> neighbors;

}

Test case format:

For simplicity, each node's value is the same as the node's index (1-indexed). For example, the first node with val == 1, the second node with val == 2, and so on. The graph is represented in the test case using an adjacency list.

An adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.

The given node will always be the first node with val = 1. You must return the copy of the given node as a reference to the cloned graph.

Constraints:

The number of nodes in the graph is in the range [0, 100].

1 <= Node.val <= 100

Node.val is unique for each node.

There are no repeated edges and no self-loops in the graph.

The Graph is connected and all nodes can be visited starting from the given node.


Analysis:

This is a classic and also fundamental question in graph.

Before we try to clone a graph, let think about how to traversal a graph. Either dfs or bfs would work.

So we can add the cloning node during graph traversal.

The tricky part is how to maintain the edges between nodes, which connects the nodes together, or to form a graph.

One solution is to use a hash_map, which maps the node-to-node relationship between the original and the cloned graphs. With this map, it would be easy to re-construct the edges between the nodes in the cloned graph.

1. Only create the node when it does not exist, or is NULL;

2. Just need to add the neighbors nodes to each node in the cloned graph as that in the original graph.


See the code below:

/*
// Definition for a Node.
class Node {
public:
    int val;
    vector<Node*> neighbors;

    Node() {}

    Node(int _val, vector<Node*> _neighbors) {
        val = _val;
        neighbors = _neighbors;
    }
};
*/
class Solution {
public:
    Node* cloneGraph(Node* node) {
        if(!node) return node;
        Node* copy = new Node(node->val, {});
        unordered_map<Node*, Node*> mp;
        mp[node] = copy;
        queue<Node*> q;
        q.push(node);
        while(q.size()) {
            auto t = q.front();
            q.pop();
            for(auto &a : t->neighbors) {
                if(!mp.count(a)) {
                    mp[a] = new Node(a->val, {});
                    q.push(a);
                }
                mp[t]->neighbors.push_back(mp[a]);
            }
        }
        return copy;
    }
};


Upper Layer

Comments

Popular posts from this blog

Brute Force - Question 2

2105. Watering Plants II Alice and Bob want to water n plants in their garden. The plants are arranged in a row and are labeled from 0 to n - 1 from left to right where the ith plant is located at x = i. Each plant needs a specific amount of water. Alice and Bob have a watering can each, initially full. They water the plants in the following way: Alice waters the plants in order from left to right, starting from the 0th plant. Bob waters the plants in order from right to left, starting from the (n - 1)th plant. They begin watering the plants simultaneously. It takes the same amount of time to water each plant regardless of how much water it needs. Alice/Bob must water the plant if they have enough in their can to fully water it. Otherwise, they first refill their can (instantaneously) then water the plant. In case both Alice and Bob reach the same plant, the one with more water currently in his/her watering can should water this plant. If they have the same amount of water, then Alice ...

Sweep Line

Sweep (or scanning) line algorithm is very efficient for some specific questions involving discrete intervals. The intervals could be the lasting time of events, or the width of a building or an abstract square, etc. In the scanning line algorithm, we usually need to distinguish the start and the end of an interval. After the labeling of the starts and ends, we can sort them together based on the values of the starts and ends. Thus, if there are N intervals in total, we will have 2*N data points (since each interval will contribute 2). The sorting becomes the most time-consuming step, which is O(2N*log(2N) ~ O(N*logN). After the sorting, we usually can run a linear sweep for all the data points. If the data point is labeled as a starting point, it means a new interval is in the processing; when an ending time is reached, it means one of the interval has ended. In such direct way, we can easily figure out how many intervals are in the processes. Other related information can also be obt...

Dynamic Programming - Easy Level - Question 1

Dynamic Programming - Easy Level - Question 1 Leetcode 1646  Get Maximum in Generated Array You are given an integer n. An array nums of length n + 1 is generated in the following way: nums[0] = 0 nums[1] = 1 nums[2 * i] = nums[i] when 2 <= 2 * i <= n nums[2 * i + 1] = nums[i] + nums[i + 1] when 2 <= 2 * i + 1 <= n Return the maximum integer in the array nums​​​. Constraints: 0 <= n <= 100 Analysis: This question is quick straightforward: the state and transitional formula are given; the initialization is also given. So we can just ready the code to iterate all the states and find the maximum. See the code below: class Solution { public: int getMaximumGenerated(int n) { int res = 0; if(n<2) return n; vector<int> f(n+1, 0); f[1] = 1; for(int i=2; i<=n; ++i) { if(i&1) f[i] = f[i/2] + f[i/2+1]; else f[i] = f[i/2]; // cout<<i<<" "<<f[i]<<endl; ...