Skip to main content

Graph - Example

Graph - Example


Leetcode 133. Clone Graph

Given a reference of a node in a connected undirected graph.

Return a deep copy (clone) of the graph.

Each node in the graph contains a value (int) and a list (List[Node]) of its neighbors.

class Node {

    public int val;

    public List<Node> neighbors;

}

Test case format:

For simplicity, each node's value is the same as the node's index (1-indexed). For example, the first node with val == 1, the second node with val == 2, and so on. The graph is represented in the test case using an adjacency list.

An adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.

The given node will always be the first node with val = 1. You must return the copy of the given node as a reference to the cloned graph.

Constraints:

The number of nodes in the graph is in the range [0, 100].

1 <= Node.val <= 100

Node.val is unique for each node.

There are no repeated edges and no self-loops in the graph.

The Graph is connected and all nodes can be visited starting from the given node.


Analysis:

This is a classic and also fundamental question in graph.

Before we try to clone a graph, let think about how to traversal a graph. Either dfs or bfs would work.

So we can add the cloning node during graph traversal.

The tricky part is how to maintain the edges between nodes, which connects the nodes together, or to form a graph.

One solution is to use a hash_map, which maps the node-to-node relationship between the original and the cloned graphs. With this map, it would be easy to re-construct the edges between the nodes in the cloned graph.

1. Only create the node when it does not exist, or is NULL;

2. Just need to add the neighbors nodes to each node in the cloned graph as that in the original graph.


See the code below:

/*
// Definition for a Node.
class Node {
public:
    int val;
    vector<Node*> neighbors;

    Node() {}

    Node(int _val, vector<Node*> _neighbors) {
        val = _val;
        neighbors = _neighbors;
    }
};
*/
class Solution {
public:
    Node* cloneGraph(Node* node) {
        if(!node) return node;
        Node* copy = new Node(node->val, {});
        unordered_map<Node*, Node*> mp;
        mp[node] = copy;
        queue<Node*> q;
        q.push(node);
        while(q.size()) {
            auto t = q.front();
            q.pop();
            for(auto &a : t->neighbors) {
                if(!mp.count(a)) {
                    mp[a] = new Node(a->val, {});
                    q.push(a);
                }
                mp[t]->neighbors.push_back(mp[a]);
            }
        }
        return copy;
    }
};


Upper Layer

Comments

Popular posts from this blog

Segment Tree

Segment tree can be viewed as an abstract data structure which using some more space to trade for speed. For example, for a typical question with O(N^2) time complexity, the segment tree method can decrease it to O(N*log(N)).  To make it understandable, let us consider one example. Say we have an integer array of N size, and what we want is to query the maximum with a query range [idx1, idx2], where idx1 is the left indexes, and idx2 is the right indexes inclusive. If we only do this kind of query once, then we just need to scan through the array from idx1 to idx2 once, and record the maximum, done. The time complexity is O(N), which is decent enough in most cases even though it is not the optimal one (for example, with a segment tree built, the time complexity can decrease down to O(log(N))). However, how about we need to query the array N times? If we continue to use the naïve way above, then the time complexity is O(N^2), since for each query we need to scan the query range once...

Bit Manipulation - Example

  Leetcode 136 Single Number Given a non-empty array of integers nums, every element appears twice except for one. Find that single one. You must implement a solution with a linear runtime complexity and use only constant extra space. Constraints: 1 <= nums.length <= 3 * 10^4 -3 * 10^4 <= nums[i] <= 3 * 10^4 Each element in the array appears twice except for one element which appears only once. Analysis: If there is no space limitation, this question can be solved by counting easily. But counting requires additional space. Here we can use xor (^) operation based on some interesting observations:  A^A = 0, here A is any number A^0 = A, here A is any number Since all the number appears twice except one, then all the number appear even numbers will be cancelled out, and only the number appears one time is left, which is what we want. See the code below: class Solution { public: int singleNumber(vector<int>& nums) { int res = 0; for(auto ...

Rolling Hash

Rolling hash is one common trick used to increase efficiency of substring comparisons by compressing (or hashing) a string into a integer. After this step, we can compare two strings directly without comparing each chars. So the efficiency can be increased from O(N) to O(1). So how to implement the rolling hash? First we need to choose a base for the expansion and a modulo to mod. The basic formula is (suppose the window is n, and the rolling direction is from left to right), HashVal = (A1*p^(n-1) + A2*p^(n-2) + ... + An-1*p^1 + An*p^0)%mod where HashVal is the hash value, Ai is the ith element, p is the base, and mod is the modulo. To avoid collision as much as we can, p and modulo usually need to be large prime numbers. One corner case is that the base order in the above formula cannot be reversed. Or to be more clear, if the rolling direction is from left to right in an array, the first element should be in the highest order of the base, or times p^(n-1), and the last element times ...