Skip to main content

Graph

Graph is a very useful data structure which has versatile applications in many fields. It is impossible to cover all the aspects of graph-related algorithm, (the same as all the other topics in the posts), we will focus on some basics, especially that may be useful in code interview.

The two basic components of a graph is vertex (or node) and edge. Vertices are connected by edges. Graph can be directed graph or un-directed graph. The directed graph has directed edges; the undirected has undirected edges.

The common representation of a graph can be adjacent matrix or list. If use adjacent matrix, the element is usually set as 0 or 1. 0 means there is no edge, and 1 mean connected. If use adjacent list, usually the index of the list is the source node, and the elements in the list is the connected nodes from the source.

Other important concepts are the indegrees and outdegrees.  The indegree of a node means the number of edges pointing to it; the outdegree of a node means the number of edges originating from it. These two concepts are very useful in topologic sort: when the nodes has dependencies.

Besides to the common breadth-first-search (bfs), depth-first-searh (dfs), union-find (uf), there are many graph algorithm named after someone's name, such as Dijkstra algorithm. In general, the algorithm named after someone's name are designed only for some specific questions (Dijkstra however is an outlier), the chance to see them in tech interview is not very high.

To sum up,

1. graph is a useful data structure having many applications;

2. the edge could have directions;

3. the nodes could have dependencies;

4. the common basic algorithms about graph are dfs, bfs, and uf;

5. there are many algorithms about graph named after someone's' name(s), which is good to know.



Question List


Upper Layer

Comments

Popular posts from this blog

Binary Search - Hard Level - Question 3

Binary Search - Hard Level - Question 3 878. Nth Magical Number A positive integer is magical if it is divisible by either a or b. Given the three integers n, a, and b, return the nth magical number. Since the answer may be very large, return it modulo 10^9 + 7. Analysis: Let us consider some examples first. Example 1, a = 4, b = 2. If b is dividable by a, then all the numbers which is dividable by a should be dividable by b as well. So the nth magical number should be n*b; Example 2, a = 3, b = 2. The multiples of 2 are: 2, 4, 6, 8, 10, 12, ... The multiple of 3 are: 3, 6, 9, 12, ... So the overlap is related to the minimum common multiple between a and b, and we need to remove the overlap which is double-counted. So now, we make some conclusions: 1. the upper bound of the nth magical number should be n*b, where a is the smaller one (or b <= a); 2. there are n*b/a magical numbers smaller than n*b; 3. there are n*b/(minimum common multiple) overlaps. Thus, the overall count is: n + ...

Segment Tree

Segment tree can be viewed as an abstract data structure which using some more space to trade for speed. For example, for a typical question with O(N^2) time complexity, the segment tree method can decrease it to O(N*log(N)).  To make it understandable, let us consider one example. Say we have an integer array of N size, and what we want is to query the maximum with a query range [idx1, idx2], where idx1 is the left indexes, and idx2 is the right indexes inclusive. If we only do this kind of query once, then we just need to scan through the array from idx1 to idx2 once, and record the maximum, done. The time complexity is O(N), which is decent enough in most cases even though it is not the optimal one (for example, with a segment tree built, the time complexity can decrease down to O(log(N))). However, how about we need to query the array N times? If we continue to use the naïve way above, then the time complexity is O(N^2), since for each query we need to scan the query range once...

Recursion - Example

Recursion - Example Leetcode 231  Power of Two Given an integer n, return true if it is a power of two. Otherwise, return false. An integer n is a power of two, if there exists an integer x such that n == 2^x Constraints: -2^31 <= n <= 2^31 - 1 Analysis: One way is to think about this question recursively: if n%2 == 1, then n must not be power of 2; if not, then we just need to consider whether (n/2) is a power of 2 or not. This is exactly the "same question with a smaller size"! It is trivial to figure out the base cases: if n == 0, return false; if n == 1, return true. See the code below: class Solution { public: bool isPowerOfTwo(int n) { // base cases if(n == 0) return false; if(n == 1) return true; // converging if(n%2 == 1) return false; return isPowerOfTwo(n/2); } }; If interested, there are some other ways to solve this problem. For example, using bit manipulation, we can have the following solution: class ...