Skip to main content

Double Pointers - Question 1

167. Two Sum II - Input Array Is Sorted

Given a 1-indexed array of integers numbers that is already sorted in non-decreasing order, find two numbers such that they add up to a specific target number. Let these two numbers be numbers[index1] and numbers[index2] where 1 <= index1 < index2 <= numbers.length.

Return the indices of the two numbers, index1 and index2, added by one as an integer array [index1, index2] of length 2.

The tests are generated such that there is exactly one solution. You may not use the same element twice.

Your solution must use only constant extra space.


Constraints:

2 <= numbers.length <= 3 * 104
-1000 <= numbers[i] <= 1000
numbers is sorted in non-decreasing order.
-1000 <= target <= 1000
The tests are generated such that there is exactly one solution.


Analysis:

The array is sorted, so we may want to consider binary search, but actually we can use a two-pointer method to quickly solve this problem, which is faster than the binary search method.

The first pointer (p1) points to the start, and the other (p2) points to the end.
At each step, we only have three possible cases, which are listed below

while (p1 < p2)
    if numbers[p1] + numbers[p2] == sum
        return {p1, p2};
    else if numbers[p1] + numbers[p2] < sum
        ++p1;
    else
        --p2;

Since we just scan the array (at most) once, the time complexity is O(N), where N is the array size. The space complexity is O(1).

If we use binary search, we need to fix the first element first, then do a binary search. So the overall time complexity is O(Nlog(N)).


See the code below:

class Solution {
public:
    vector<int> twoSum(vector<int>& numbers, int target) {
        int x = 1, y = (int)numbers.size();
        while(x < y) {
            int sum = numbers[x-1] + numbers[y-1];
            if (sum == target) {
                return {x, y};
            } else if (sum < target) {
                ++x;
            } else {
                --y;
            }
        }
        return {-1, -1};
    }
};



Comments

Popular posts from this blog

Segment Tree

Segment tree can be viewed as an abstract data structure which using some more space to trade for speed. For example, for a typical question with O(N^2) time complexity, the segment tree method can decrease it to O(N*log(N)).  To make it understandable, let us consider one example. Say we have an integer array of N size, and what we want is to query the maximum with a query range [idx1, idx2], where idx1 is the left indexes, and idx2 is the right indexes inclusive. If we only do this kind of query once, then we just need to scan through the array from idx1 to idx2 once, and record the maximum, done. The time complexity is O(N), which is decent enough in most cases even though it is not the optimal one (for example, with a segment tree built, the time complexity can decrease down to O(log(N))). However, how about we need to query the array N times? If we continue to use the naïve way above, then the time complexity is O(N^2), since for each query we need to scan the query range once. We

Binary Search - Hard Level - Question 3

Binary Search - Hard Level - Question 3 878. Nth Magical Number A positive integer is magical if it is divisible by either a or b. Given the three integers n, a, and b, return the nth magical number. Since the answer may be very large, return it modulo 10^9 + 7. Analysis: Let us consider some examples first. Example 1, a = 4, b = 2. If b is dividable by a, then all the numbers which is dividable by a should be dividable by b as well. So the nth magical number should be n*b; Example 2, a = 3, b = 2. The multiples of 2 are: 2, 4, 6, 8, 10, 12, ... The multiple of 3 are: 3, 6, 9, 12, ... So the overlap is related to the minimum common multiple between a and b, and we need to remove the overlap which is double-counted. So now, we make some conclusions: 1. the upper bound of the nth magical number should be n*b, where a is the smaller one (or b <= a); 2. there are n*b/a magical numbers smaller than n*b; 3. there are n*b/(minimum common multiple) overlaps. Thus, the overall count is: n +

Recursion - Example

Recursion - Example Leetcode 231  Power of Two Given an integer n, return true if it is a power of two. Otherwise, return false. An integer n is a power of two, if there exists an integer x such that n == 2^x Constraints: -2^31 <= n <= 2^31 - 1 Analysis: One way is to think about this question recursively: if n%2 == 1, then n must not be power of 2; if not, then we just need to consider whether (n/2) is a power of 2 or not. This is exactly the "same question with a smaller size"! It is trivial to figure out the base cases: if n == 0, return false; if n == 1, return true. See the code below: class Solution { public: bool isPowerOfTwo(int n) { // base cases if(n == 0) return false; if(n == 1) return true; // converging if(n%2 == 1) return false; return isPowerOfTwo(n/2); } }; If interested, there are some other ways to solve this problem. For example, using bit manipulation, we can have the following solution: class