Skip to main content

Binary Search - Hard Level - Question 1

Binary Search - Hard Level - Question 1


Leetcode 410 Split Array Largest Sum

Given an array nums which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays.

Write an algorithm to minimize the largest sum among these m subarrays.

Constraints:

1 <= nums.length <= 1000

0 <= nums[i] <= 10^6

1 <= m <= min(50, nums.length)


Analysis:

This question seems not to be related with binary search, actually it does!

The key argument is: if there is a value, say X, is the minimum of the largest sum among these m non-empty subarrays.  Then all the values below X cannot divide the array into m non-empty subarrays (should be larger than m). 

Why?

We can proof it by contradiction: if a value smaller than X, say Y, can be the minimum of the largest sum among these m non-empty subarrays, then X is NOT the minimum as claimed in the first sentence. Thus, there is no such Y existed.

If all the values smaller than X cannot be the minimum, this question become a typical binary-search problem.

We can make a guessed value, mid,  first. Then we need to divide the array into m non-empty subarrays, and the sum of the each should be <= mid. If there are more subarrays, meaning mid is too smaller, we can remove all the values <= mid out of consideration; otherwise, we can consider a smaller value than mid, to see whether it is still valid, by removing all the values > mid out of consideration.

In addition, the minimum value cannot be smaller than the largest element, since the largest sum of the any non-empty subarray must be >= the largest element. So the largest element gives the left boundary of the binary search.

See the code below:


class Solution {
public:
    int splitArray(vector<int>& nums, int m) {
        int left = 0, right = INT_MAX;
        for(auto &a : nums) left = max(a, left);
        while(left < right) {
            int mid = left + (right - left) / 2;
            if(!isValid(nums, m, mid)) left = mid + 1;
            else right = mid;
        }
        return left;
    }
private:
    bool isValid(vector<int>& nums, int& m, int mid) {
        int ct = 0, sum = 0;
        for(auto &a : nums) {
            sum += a;
            if(sum >= mid) {
                ++ct;
                if(sum > mid) sum = a;
                else sum = 0;
            }
        }
        if(sum > 0) ++ct;
        return ct <= m;
    }
};


Question 2

Leetcode 4 Median of Two Sorted Arrays

Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.

The overall run time complexity should be O(log (m+n)).

Constraints:

nums1.length == m

nums2.length == n

0 <= m <= 1000

0 <= n <= 1000

1 <= m + n <= 2000

-10^6 <= nums1[i], nums2[i] <= 10^6


Analysis:


One way to think about this question is to find the Kth element of the two SORTED arrays.

We can apply binary search for this: first to make a guess of the value, mid; then count how many elements smaller than mid; if the count < k (the Kth element), we need to make the mid larger (or all the values smaller than mid are NOT valid neither); otherwise, we can test even smaller values (or shrinking the search range to the smaller half range).

For counting, we can use the binary search again, since the array is sorted.


Please see the code below:

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int len1 = nums1.size(), len2 = nums2.size(), sum = len1 + len2;
        if(sum & 1) return findKth(nums1, nums2, sum/2+1)*1.0;
        return (findKth(nums1, nums2, sum/2) + findKth(nums1, nums2, sum/2 + 1))/ 2.0;
    }
    
private:
    int findKth(vector<int> &v1, vector<int> &v2, int k) {
        if(v1.empty()) return v2[k-1];
        if(v2.empty()) return v1[k-1];
        int left = min(v1[0], v2[0]), right = max(v1.back(), v2.back());
        while(left < right) {
            int mid = left + (right - left) / 2;
            int ct = 0;
            auto id1 = upper_bound(v1.begin(), v1.end(), mid) - v1.begin();
            auto id2 = upper_bound(v2.begin(), v2.end(), mid) - v2.begin();
            ct += id1 + id2;
            if(ct < k) left = mid + 1;
            else right = mid;
        }
        return left;
    }
};


The time complexity is O(log(Max-Min) * (log(m) + log(n)))  ~ O(log(m*n)), which may be larger than O(log(m+n)), but they are very close (remember, them are log!). 

This method can be easy to extend to n (>2) sorted arrays to find the median. 

A popular way to reach the literally time complexity of O(log(m+n)) is given below, if interested to check.

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int m = nums1.size(), n = nums2.size(), total = m + n;
        if(total%2==0) return (help(nums1, 0, nums2, 0, total/2) + help(nums1, 0, nums2, 0, total/2+1))/2.0;
        return help(nums1, 0, nums2, 0, total/2+1)/1.0;
    }
private:
    double help(vector<int>& n1, int st1, vector<int>& n2, int st2, int k){
        int m = n1.size() - st1, n = n2.size() - st2;
        if(m > n) return help(n2, st2, n1, st1, k);
        if(m==0) return n2[st2+k-1];
        if(k==1) return min(n1[st1], n2[st2]);
        int a = min(m, k/2), b = k - a;
        if(n1[st1+a-1] == n2[st2+b-1]) return n1[st1+a-1];
        if(n1[st1+a-1] > n2[st2+b-1]) return help(n1, st1, n2, st2+b, k-b);
        return help(n1, st1+a, n2, st2, k-a);
    }
};


Upper Layer

Comments

Popular posts from this blog

Binary Search - Hard Level - Question 3

Binary Search - Hard Level - Question 3 878. Nth Magical Number A positive integer is magical if it is divisible by either a or b. Given the three integers n, a, and b, return the nth magical number. Since the answer may be very large, return it modulo 10^9 + 7. Analysis: Let us consider some examples first. Example 1, a = 4, b = 2. If b is dividable by a, then all the numbers which is dividable by a should be dividable by b as well. So the nth magical number should be n*b; Example 2, a = 3, b = 2. The multiples of 2 are: 2, 4, 6, 8, 10, 12, ... The multiple of 3 are: 3, 6, 9, 12, ... So the overlap is related to the minimum common multiple between a and b, and we need to remove the overlap which is double-counted. So now, we make some conclusions: 1. the upper bound of the nth magical number should be n*b, where a is the smaller one (or b <= a); 2. there are n*b/a magical numbers smaller than n*b; 3. there are n*b/(minimum common multiple) overlaps. Thus, the overall count is: n + ...

Segment Tree

Segment tree can be viewed as an abstract data structure which using some more space to trade for speed. For example, for a typical question with O(N^2) time complexity, the segment tree method can decrease it to O(N*log(N)).  To make it understandable, let us consider one example. Say we have an integer array of N size, and what we want is to query the maximum with a query range [idx1, idx2], where idx1 is the left indexes, and idx2 is the right indexes inclusive. If we only do this kind of query once, then we just need to scan through the array from idx1 to idx2 once, and record the maximum, done. The time complexity is O(N), which is decent enough in most cases even though it is not the optimal one (for example, with a segment tree built, the time complexity can decrease down to O(log(N))). However, how about we need to query the array N times? If we continue to use the naïve way above, then the time complexity is O(N^2), since for each query we need to scan the query range once...

Recursion - Example

Recursion - Example Leetcode 231  Power of Two Given an integer n, return true if it is a power of two. Otherwise, return false. An integer n is a power of two, if there exists an integer x such that n == 2^x Constraints: -2^31 <= n <= 2^31 - 1 Analysis: One way is to think about this question recursively: if n%2 == 1, then n must not be power of 2; if not, then we just need to consider whether (n/2) is a power of 2 or not. This is exactly the "same question with a smaller size"! It is trivial to figure out the base cases: if n == 0, return false; if n == 1, return true. See the code below: class Solution { public: bool isPowerOfTwo(int n) { // base cases if(n == 0) return false; if(n == 1) return true; // converging if(n%2 == 1) return false; return isPowerOfTwo(n/2); } }; If interested, there are some other ways to solve this problem. For example, using bit manipulation, we can have the following solution: class ...